
營養與老化 (00070115) Nutrition and Aging Mechanisms of Aging

保健營養學系三年級

授課教師:保健營養學系 趙振瑞(Jane Chao)教授

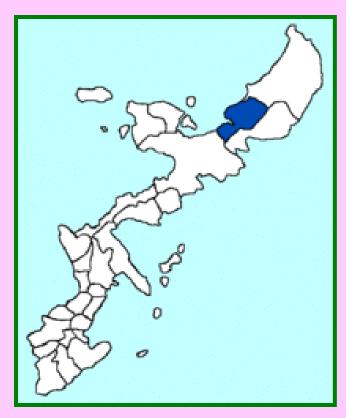
Tel: 2736-1661 ext.6548; E-mail: chenjui@tmu.edu.tw

Learning Objectives

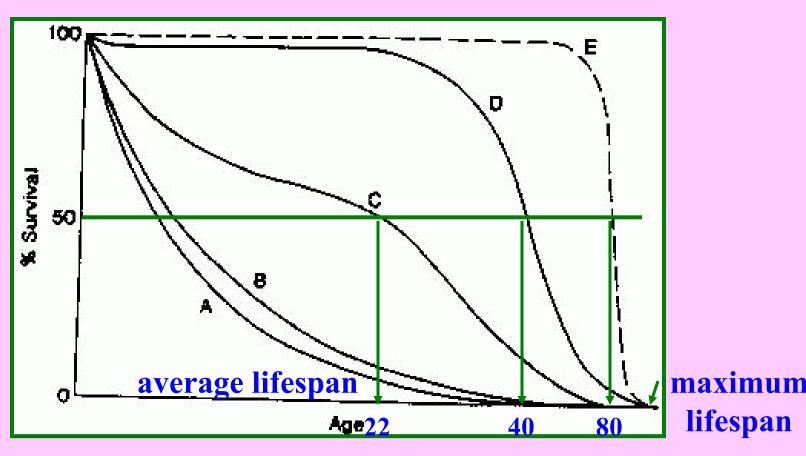
- Theory of Aging
- Factors Influencing Aging Process
- Nutrient Intake and Aging

References

- Geriatric Nutrition: The Health Professional's Handbook (2006, 3rd ed) Ronni Chernoff, Jones and Bartlett Publishers, Inc.
- Nutrition in Aging (1997, 3rd ed) Schlenker, ED. William C. Brown


The Oldest People

- Supercentenarian: ≥110 yr
- Jeanne Calment (F) of France (1875 ~ 1997), was aged 122 years and 164 days
- Shigechiyo Izumi (M) of Japan (1865?~1986) was aged 120 years and 237 days
- Sarah DeRemer Knauss (F) of USA (09.24.1880~12.30.1999), was aged 119 years and 97 days
- Lucy Hannah (F) of USA (07.16.1875 ~ 03.21.1993) is aged 117 yr and 248 days
- among top 10 oldest (113~114 yr) people currently living: 9 are females, 6 live in USA, 2 live in Japan, 1 lives in UK or France



日本長壽村

- 日本琉球列島沖繩島大宜味村(おおぎみそん)
- 90歲以上者46人,佔總人口的1.3%

http://upload.wikimedia.org/wikipedia/commons/t humb/0/02/Ogimi_in_Okinawa_Map.gif/200px-Ogimi_in_Okinawa_Map.gif 5

A: exponential decay (指數衰減) curve

B: to the survival of small animals, such as mice or squirrels

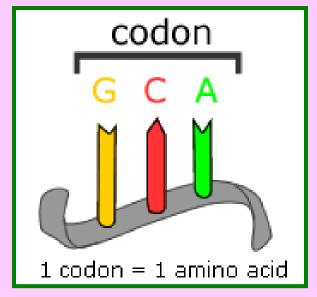
C: human survival curve when average lifespan was 22 yr

D: human survival curve when average lifespan was 40 yr

E: human survival curve when average lifespan was 80 yr

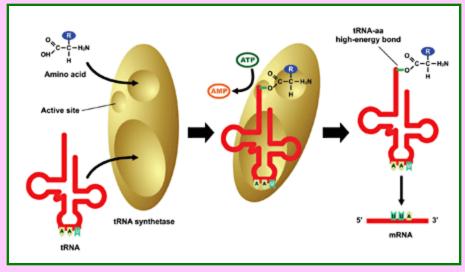
http://www.benbest.com/lifeext/aging.html

Theory of Aging

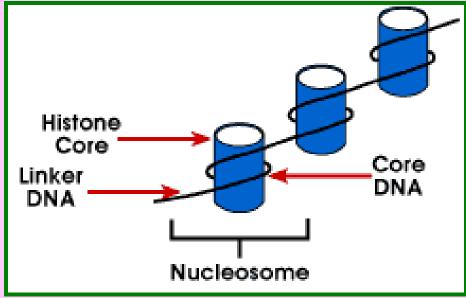

- Hayflick (1977) tissue cultures (most cellular systems) are able to undergo only 40~50 doublings (no. of cell division)
 - → finite life span no immortal
- biological theory:
 - genetic: damage to DNA or errors in transmission of information
 - nongenetic: chemical or structural changes induced by environmental factors

Genetic Theory of Aging

- human with long-lived parents and grandparents live ~ 6 yr longer than those with parents and grandparents who died < 50 yr
- a genetic program sets upper limits of life span in a species
- familial characteristics influence differences in life span
- genetic programs can be altered by environmental factors


Genetic Theory of Aging

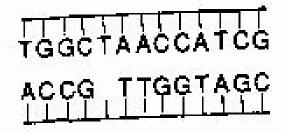
- DNA readout codon restriction
- DNA damage somatic mutation
- error theory
- telomere theory
- Hayflick limit theory



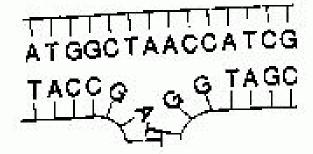
DNA Readout – Codon Restriction

- aging is accompanied by changes in the types of aminoacyl-tRNA synthetases present in cells
- histones are more tightly bound to chromatin than in young

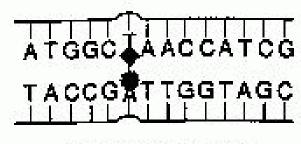
http://journals.prous.com/journals/dnp/20061906/html/dn190347/images/fig1.gif


http://www.ndsu.edu/pubweb/~mcclean/plsc431/eukarychrom/histone.gif

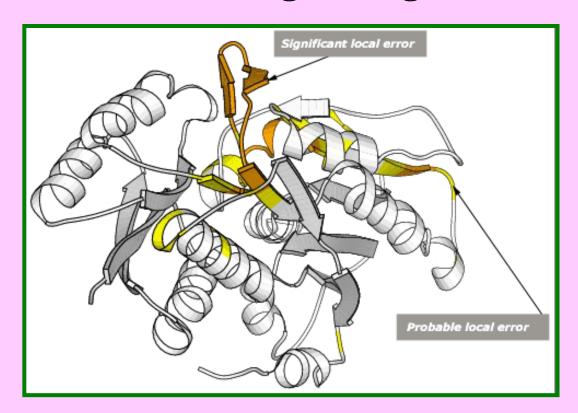
10


DNA Damage – Somatic mutation

slight differences in the structure of protein formed


TYPE OF DAMAGE	events/cell/d	% of total daily damage
Single-strand break	120,000	50.9
N ⁷ -Methylguanine	84,000	35.6
Depurination	24,000	10.2
O ⁶ -Methylguanine	3,120	1.3
Oxidized DNA	2,880	1.2
Depyrimidation	1,320	0.5
Cytosine deamination	360	0.2
Double-strand breaks	9	0.01
Interstrand cross-links	8	0.01

DEPURINATION

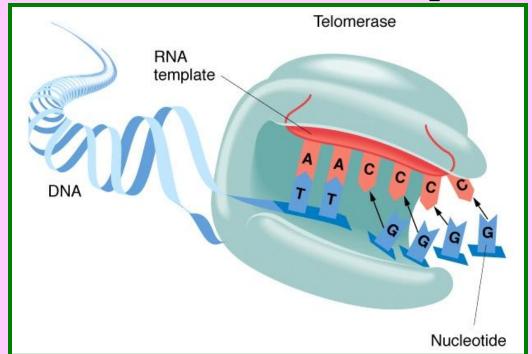

SINGLE-STRAND BREAK

CROSS-LINK

Error Theory

- the production of proteins and the reproduction of DNA sometimes is not carried out with accuracy
- the accumulation of these flawed molecules can cause diseases and other age changes to occur

Telomere Theory


- at the ends of each chromosome is a long non-functional strand of DNA
- consist of the 6-base repeating sequence 5'-TTAGGG-3'
- at conception each human telomere is about 10 k bp long (ie, about 1,666 TTAGGG repeats)
- the typical chromosome is about 13,000 times longer (130 million bp)
- telomeres lose an average of 8 TTAGGG subunits per cell division
- at birth (9 mo. later), the average telomere is half as long as it was at conception

Telomere Theory

- with each cell division, some of the telomere is lost because DNA polymerase cannot complete the 5'-end and therefore leaves a single-strand 3'-end overhang
- the number of times that most dividing cells can divide is limited by telomere length
- telomeres shorten more rapidly in short-lived mammals & birds than in long-lived ones
- germ cells (sperm or egg), stem cells (undifferentiated cells) and "immortalized" cancer cells contain telomerase that replaces lost telomeres

Telomere Theory

- telomerase is a reverse transcriptase, making DNA from an RNA template
- in adults, telomerase is expressed in cells that need to divide regularly (e.g., in the immune system), although most somatic cells do not express it

Hayflick Limit Theory

- human cells are limited in the number of times it can divide, which can be affected by waste accumulation
- human cells ability to divide is limited to approximately 50-times, after which they simply stop dividing (and hence die)

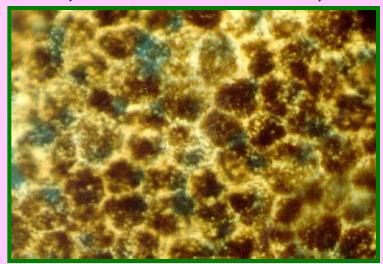
Nongenetic Theory of Aging

- wear and tear theory
- deprivation theory
- waste accumulation (membrane) theory
- cross-linking (glycosylation) theory
- free radical theory
- mitochondrial decline theory
- neuroendocrine theory

Wear and Tear Theory

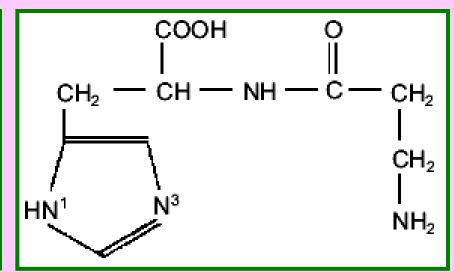
- the body and its cells were damaged by overuse and abuse
- the cells and organs are worn down by toxins in our diet and in the environment; by the excessive consumption of fat, sugar, caffeine, alcohol and nicotine; by the ultra-violet rays of the sun and by the many other physical and emotional stresses to which we subject our bodies

Deprivation Theory


• inadequate delivery of essential nutrients or O_2

http://www.elanso.com/U/A/20080320/63341577640 2072500/128504544402072500.jpg

Waste Accumulation Theory


- accumulation of deleterious substances
- lipofuscin (脂褐素) is formed by a complex reaction that binds fat in the cells to proteins
- lipofuscin is common in the neurons, muscle fibers of heart, lungs, skin, adrenal cortex, and testicle

http://starklab.slu.edu/lipofuscin.JPG

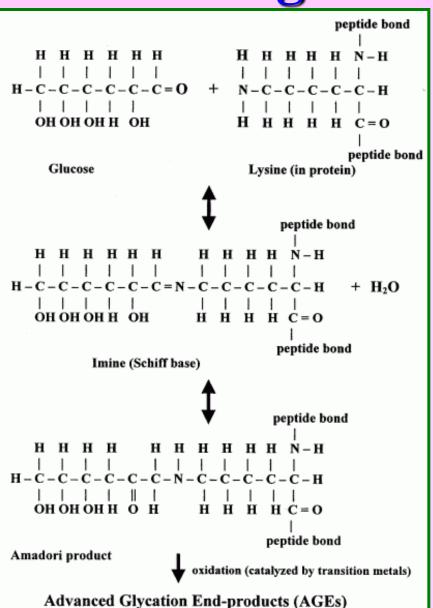
Waste Accumulation Theory

• acetyl-L-carnitine (ALC) and carnosine (β-alanyl-Lhistidine) help to chelate ionic metals (flush toxins from the body) and to remove lipofuscin

acetyl-L-carnitine

carnosine

Cross-Linking Theory

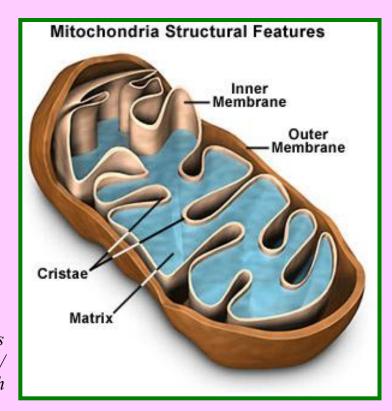

- the binding of glucose (simple sugars) to protein:

 Maillard reaction, or non-enzymatic glycosylation, a

 process that occurs under the presence of oxygen →

 causes various problems
- binding to DNA may cause damage that leads to malformed cells and thus cancer
- responsible for cataract, cardiac enlargement, the hardening of collagen, and renal disorder
- diabetics have 2-3 times the numbers of cross-linked proteins when compared to their healthy counterparts

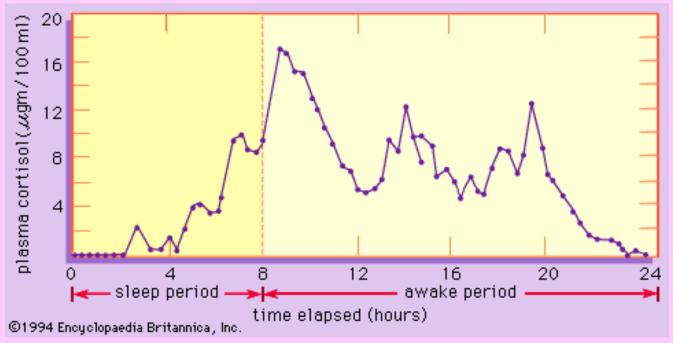
Cross-Linking Theory

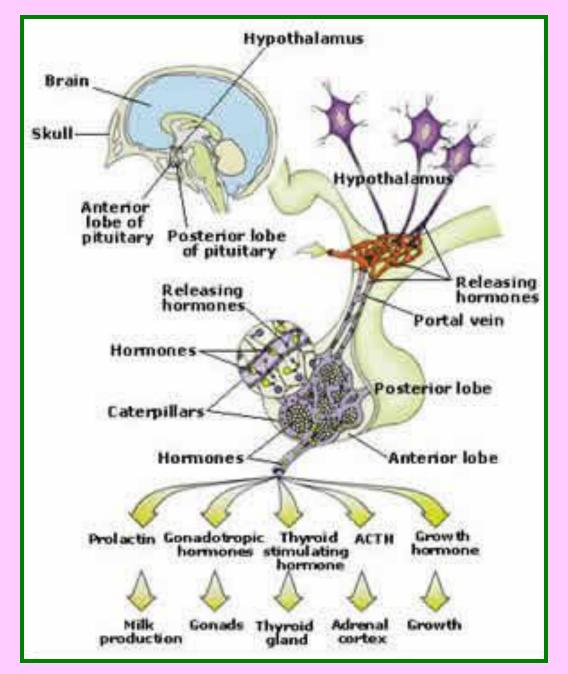

Free Radical Theory

- free radicals are known to attack the structure of cell membranes, which then create metabolic waste products
- toxic accumulations interfere with cell communication, disturb DNA, RNA and protein synthesis, lower energy levels and generally impede vital chemical processes
- most toxic: hydroxyl (*OH)-radical and superoxide
 (O₂**) -radical

Table 3 Chemical Notation for various ROS/RNS		
Radicals and Related Species	Name	
¹ O ₂	singlet oxygen	
н•	hydrogen atom	
H ⁺	proton, hydron	
HO*	hydroxyl radical	
OH-	hydroxide anion	
H ₂ O ₂	hydrogen peroxide	
RO*	alkoxyl radical	
ROO*	alkyldioxyl, alkylperoxyl radical	
ROOH	alkyl hydroperoxide	
GS*	glutathiyl radical	
*CH₃	methyl radical	
*NO	nitrogen monoxide, nitric oxide	
*NO ₂	nitrogen dioxide	
N ₂ O	nitrous oxide	
NO ₂ -	nitrite	
HNO ₂	nitrous acid	
NO ₃ -	nitrate	
HNO ₃	nitric acid	

Mitochondrial Decline Theory


- mitochondria become less efficient, fewer in number and larger
- ATP production declines


http://www.cartage.org.lb/en/themes /sciences/zoology/animalphysiology/ anatomy/animalcellstructure/Mitoch ondria/mitochondria.jpg

Neuroendocrine Theory

- the hypothalamus loss of regulation
- hypothalamus is damaged by the hormone cortisol
- cortisol is produced from the adrenal glands and considered to be a hormone responsible for stress

28

29

Factors Influencing Aging Process

intrinsic factors

genetic characteristics

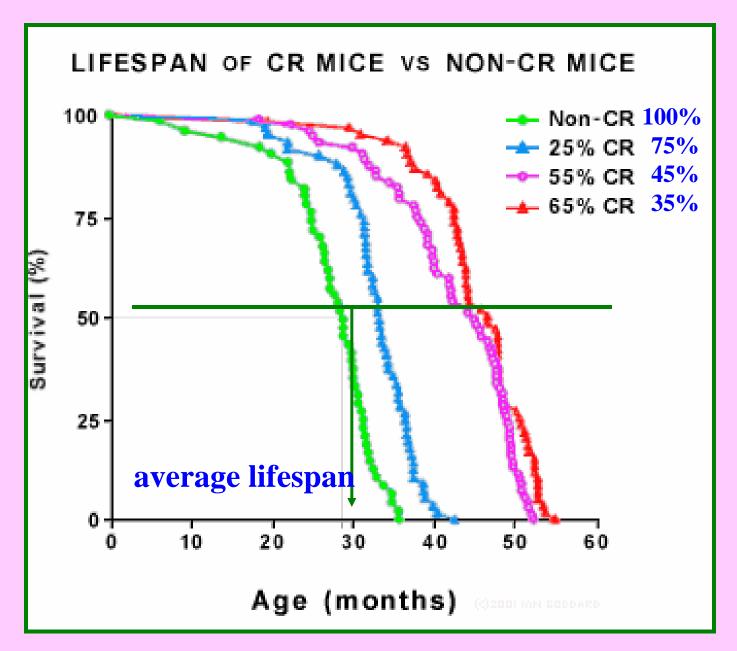
centenarians (≥ 100 yr-old people) produce more lymphocytes

high specific activity of superoxide dismutase shows a longer life span

extrinsic factors

environmental factors

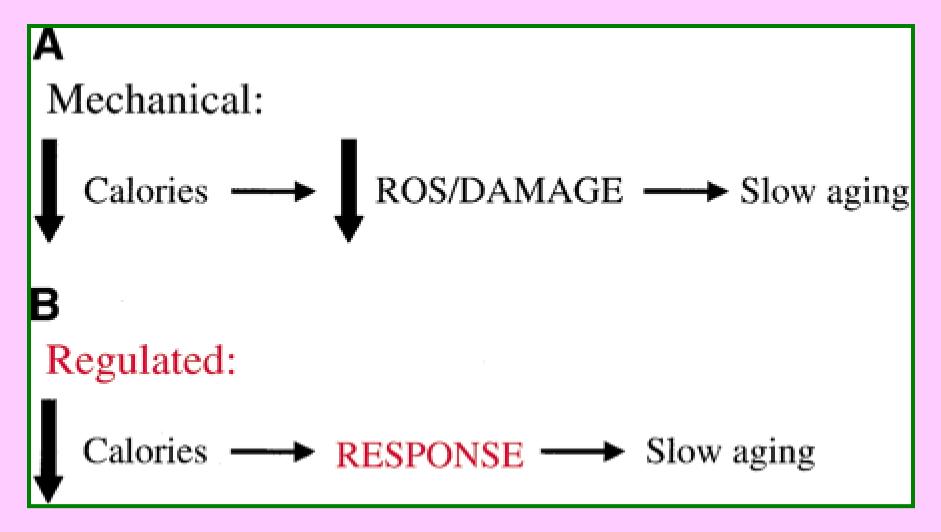
nutrient intake


Nutrient Intake and Aging

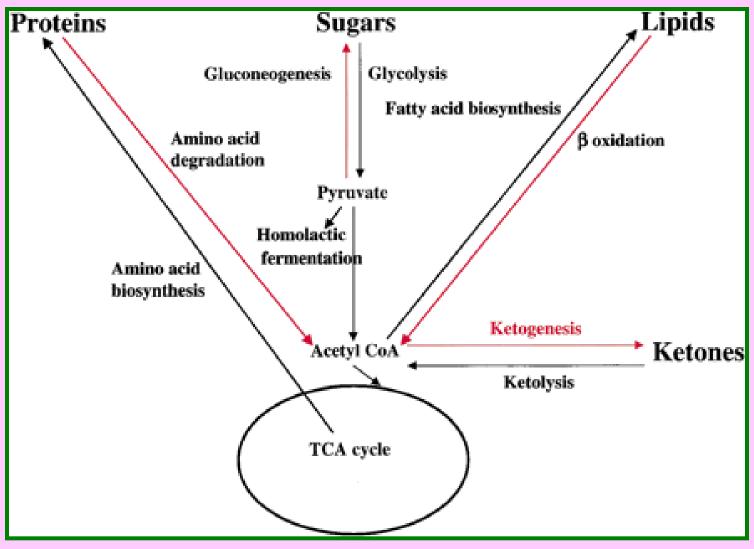
- Tokyo Metropolitan Institute of Gerontology (1988): the only factors effective in preventing aging are nutrition, exercise, and blood pressure control
- Eat to live and not live to eat —Franklin
- autointoxication—Metchnikoff (a Russian physiologist)

death occurred as a result of toxins produced in a large intestine by fecal waste and then absorbed into the body

Nutrient Intake and Aging


- yogurt and other fermented milk products containing lactic acid-producing bacilli destroy the intestinal microbes responsible for the poisonous waste
- caloric restriction ↑ life span
- below 50 percent takes you into actual calorie starvation, and the death rate increases

Caloric Restriction


- ↑ DNA repair
- ↓ oxidative damage
- ↑ body's own antioxidant defense systems
 - **†** heat shock protein (Hsp) response
- ↓ glycosylation
- delays age-related immunological decline
- most likely not going to die from a heart attack, stroke or diabetes

Caloric Restriction

Koubova and Guarente 2003

Caloric Restriction

up-regulation

down-regulation or no change

Koubova and Guarente 2003

Summary

- Theory of Aging
 - Genetic
 - Nongenetic
- Factors Influencing Aging Process
 - Intrinsic factors
 - Extrinsic factors