
誉養與老化 (00070115) Nutrition and Aging Nutrient Metabolism, Requirements, and Food Selection Patterns

http://www.diet.com/info/img/n waz_01_img0015.jpg

保健營養學系三年級 授課教師:保健營養學系 趙振瑞(Jane Chao)教授 Tel: 2736-1661 ext.6548; E-mail: chenjui@tmu.edu.tw

Learning Objectives

- Nutrient Metabolism
- Nutrient Requirements
- Food Selection Patterns
- Age and Food Intake

References

- Geriatric Nutrition: The Health Professional's Handbook (2006, 3rd ed) Chernoff, R, Jones and Bartlett Publishers, Inc.
- Nutrition in Aging (1997, 3rd ed) Schlenker, ED, McGraw-Hill Higher Education

Carbohydrate Metabolism

- normal metabolic function is maintained on a daily intake of 50~100 g carbohydrate
- carbohydrate-free diet stored triglycerides are broken down fatty acid oxidation produce ketone bodies
 a breakdown of body protein loses of potassium, sodium and fluid

Carbohydrate Metabolism

http://www.biblelife.org/cholesterol-linch-big.jpg

Carbohydrate Metabolism

- foods high in dietary fiber are associated with appropriate serum lipoprotein patterns
 incidence of cardiovascular disease, DM, colon
 - cancer
 - fiber supplements are unnecessary contribute to bowel dysfunction and interfere with absorption of important minerals

Lipid Metabolism

- essential fatty acids:
 - linoleic acid (18:2 ω -6 $\triangle^{9,12}$) \rightarrow \rightarrow arachidonic acid (20:4 ω -6 $\triangle^{5,8,11,14}$)
 - linoleic acid intake: 1~2% of total calorie intake prevent clinical or biochemical signs of def.
 - **1** T of vegetable oil: ~6 g linoleic acid
 - the ratio of linoleic acid to ω -3 fatty acids: related to physiological functions (platelet aggregation, the development of CHD, inflammatory responses, the development of rheumatoid arthritis)

Lipid Metabolism

- linolenic acid (18:3 ω -3 $\triangle^{9,12,15}$) $\rightarrow \rightarrow \rightarrow EPA$ (20:5 ω -3 $\triangle^{5,8,11,14,17}$), DHA (22:6 ω -3 $\triangle^{4,7,10,13,16,19}$)
- ω-3 PUFA in the oil of fatty fish \bullet serum triglycerides and total cholesterol interfere with synthesis of lipoprotein (VLDL) effect on composition of LDL-cholesterol by changing cholesterol/protein ratio
 ¹ mg/dL in HDL-cholesterol
 \downarrow 2% in the risk of CHD in M **↓ 3%** in the risk of CHD in F

lose body protein when 1 age ullet↓ body potassium ↓ skeletal muscles 25% bw – at birth 45% bw – young adults 27% bw – after 70 yr maximal oxygen consumption two possible hypotheses: igodol \downarrow the need for proteins and amino acids inadequate intake of proteins and amino acids

- 3-methylhistidine: amino acid breakdown product of major muscle proteins excretion in urine in proportion to total muscle protein turnover (TMPT)
- labeled glycine → measure total body protein turnover (TBPT)
- **TBPT TMPT = nonmuscle protein turnover**
- older people: ↑ TBPT
 ↓ contribution of TMPT to TBPT
 due to less muscle mass

- TMPT: 20% of TBPT in older M
 30% of TBPT in younger M
- liver, kidney, heart [↑] rate of protein metabolism
- glutamine: important in maintaining the cells of immune system

inadequate protein intake $\rightarrow \downarrow$ no. of T cells & neutrophils

- aging process → ↓ sensitivity of skeletal muscles and adipose cells to the action of insulin and transport of glucose
 - \rightarrow glucose intolerance
- plasma amino acid levels and protein metabolism: sensitive to insulin action

promote plasma amino acids, esp. BCAA, into skeletal muscles for protein synthesis

• $trp \rightarrow \rightarrow serotonin$

trp competes with BCAA, phe, tyr for transport across cell membrane into brain synthesis in platelet, intestinal mucosa, pineal body ↓ gastric secretion, ↑ vasoconstriction

insulin ↓ plasma amino acid levels, ↑ uptake of trp, ↑ neurotransmitter synthesis

older adults: Use the ratio of trp to competing amino acids (BCAA, phe, tyr) in plasma

affect trp uptake and neurotransmitter production

Nutrient Requirements

physiological changes

hydrochloric acid secretion in the stomach
 pH

overgrowth of bacteria in the small bowel affect bioavailability of certain vitamins (folate, vitamin B_{12}), certain minerals (iron, calcium, copper, and zinc), and protein

http://www.health-care-training-uk.co.uk/images/nutrition%20elderly.jpg

Nutrition in the Elderly

Nutrient Requirements

Dietary Reference Intakes (DRIs) by Department of Health, Taiwan, 2002

51~70 yr (vs. 31~50 yr)		71 yr + (vs. 31~50 yr)	
Males	Females	Males	Females
↓ Energy	~ no change	↓↓ energy	↓ energy
↓ protein	↓ protein	↑ protein	↑ protein
no change	↓ iron	no change	↓ iron
↑ vitamin D	↑ vitamin D	↑ vitamin D	↑ vitamin D
~ no change	no change	\downarrow vitamin B_1	\checkmark vitamin B_1
~ no change	~ no change	\downarrow vitamin B_2	\checkmark vitamin B_2
\uparrow vitamin B_6	\uparrow vitamin B_6	\uparrow vitamin B_6	\uparrow vitamin B ₆
~ no change	no change	↓ niacin	↓ niacin

Energy

- Baltimore Longitudinal Study of Aging: energy need at 30 yr: 2700 kcal/d energy need at 80 yr: 2100 kcal/d
- NHANES II:

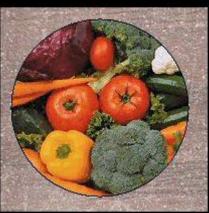
24-34 yr consume 2700 kcal/d

65-74 yr consume 1800 kcal/d

- RDA for 51 yr+: 30 kcal/kg/d reduced from 36-37 kcal/kg/d for adults
- DRIs (Taiwan) for 71 yr+ : M 20.3 kcal/kg/d F 18.1 kcal/kg/d

Protein

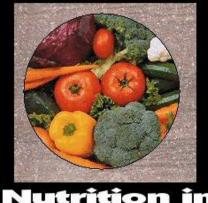
protein requirement


LBM and

fat with age

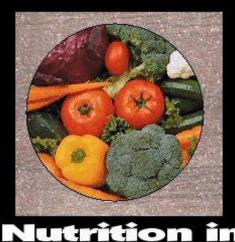
the rate of total body protein synthesis / bw

serum albumin level


daily albumin synthesis

Nutrition in the Elderly

Protein


- ↑ protein requirement
- keep the same requirement as adults (12~20% protein)
 - ↓ efficiency of absorptive and metabolic process
 - ↓ total food intake associated with ↓ physical activity

the Elderly

Protein

- chronic renal failure: restrict protein intake
- other chronic diseases, injury, and surgery: may need more protein
- DRIs (Taiwan) for 71 yr+: 1.0 g/kg vs adult 0.9 g/kg

the Elderly

rat	J		١.
	N	l	Г
	-	А.	2

- TC with age:
 LDL production
 fractional clearance of LDL
 LDL receptors activity
- if TC is 250 mg/dL → predict 60 yr will get atherosclerosis; if TC is 300 mg/dL → predict 50 yr will get atherosclerosis
- goal: maintain TC as low as realistics
 saturated fatty acids & cholesterol intake maintain desirable bw
 - **30%** or less of energy as fat

Carbohydrate

- renal function
- ↑ bacterial enzyme activity in small bowel
- ↑ activity in colonic microflora in the presence of unabsorbed carbohydrate
- Iactase activity

glucose intolerance

 \Rightarrow dietary carbohydrate 55-60% with a high proportion of complex over simple sugars

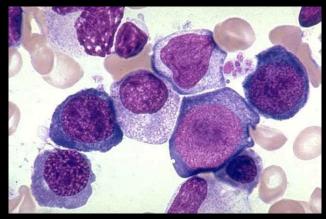
 adverse metabolic effects of sucrose ingestion on carbohydrate and lipid metabolism: hyperglycemia and hyperlipidemia

Calcium

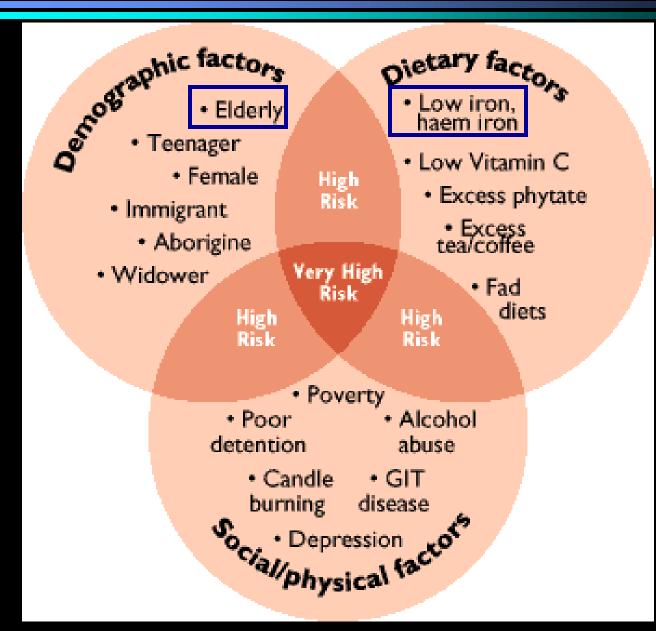
- AI: 1000 mg
- related to osteoporosis
- intestinal calcium absorption in both sexes
- achlorhydria
- vitamin D intake and activation (\$\frac{1}{25}\$ dihydroxycholecalciferol)
- smoking, alcohol abuse, high sodium, protein, phosphorus and caffeine intake, steroid use
- ↑ calcium requirement

Calcium

- alcohol alters calcium and bone metabolism
- high sodium → induces hypercalciuria competing with calcium for renal tubular resorption
- high protein → ↑ urinary calcium
 renal tubular resorption of calcium
 2× protein intake → ↑ 50% urinary calcium
- high caffeine $\rightarrow \uparrow$ urinary calcium


Phosphorus

• AI: 800 mg


- high phosphorus Ca/P ≤ 1/3 → hypocalcemia, secondary hyperparathyroidism, osteoporosis
- parathyroid hormone and active vitamin D:
 <u>↑ intestinal calcium absorption</u>
 - **†** bone and renal resorption
 - ↑ serum calcium
- hyperparathyroidism: stimulates the conversion of 25-(OH) vitamin D to 1,25-(OH)₂ vitamin D in kidney (stimulates 1α-hydroxylase activity)

Iron

- **RDA: 10** mg
- inadequate iron intake
- blood loss due to chronic diseases
- ↓ nonheme iron absorption
 secondary to hypo- or achlorhydria
 ⇒ iron deficiency

http://www.thailabonline.com/blood/sec 31a3.jpg

http://www.vanderbilt.edu/AnS/psychology/health_psychology/IronDeficiencyAnemia.htm 26

Vitamins

- vitamin A: RDA 3 600 µg RE, 9 500 µg RE higher serum retinyl ester levels in the elderly ↓ clearance (57 min vs 31 min) of lipid-rich lipoprotein carrying retinyl esters
- folate: RDA: 400 µg
 ↑ pH

overgrowth of bacteria in the small bowel

 \Rightarrow folate malabsorption

Vitamins

• vitamin B_{12} RDA: 2.4 µg low intake impaired absorption (\checkmark intrinsic factor secretion) \downarrow digestive release of vitamin B₁₂ from food bacterial overgrowth in small bowel (competition with intestinal cells for vitamin B_{12}) \checkmark serum vitamin **B**₁₂ vitamin DAI: 10 µg \bullet \downarrow sunlight exposure impaired renal 1α -hydroxylase

Influences on Food Choices

psychological factors: social activity self-esteem nutritional knowledge bereavement loneliness symbolism of food mental awareness food aversion/faddism

http://www.thailandparadise.com/thaifoodnew/thaifood2.jpg

Influences on Food Choices

- physiological factors: appetite taste acuity/olfactory acuity (anosmia)
 - dental status
 - prescribed diets
 - chronic disease
 - food intolerance
 - health status

http://hammockbridge.com/home/images/stories/fresh_fruit.jpg

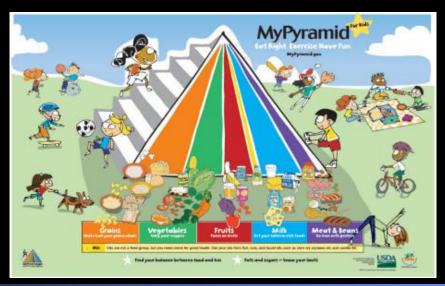
physical status/physical exercise use of drug

Influences on Food Choices

socioeconomic factors: igodolage/sex income cooking facilities daily schedule retirement/leisure time education distance to food store availability of transportation availability of familiar foods

http://2.bp.blogspot.com/_Ry9ok2KQbkU/S46f WMg5xhI/AAAAAAAAAAMU/j7h0dDvuYOk/s 320/retirement.jpg

 The National Food Consumption Survey (NFCS)


 ^{\$} peak calorie consumption: 20~29 yr mean intake: 2,501 kcal mean intake by age 70: 1,875 kcal

♀ peak calorie consumption: 20~29 yr mean intake: 1,634 kcal mean intake by age 70: 1,386 kcal

第三次國民營養健康狀況變遷調查 (82/7~85/6)
③ peak calorie consumption: 25~34 yr mean intake: 2,412 kcal mean intake (55~64 yr): 2,075 kcal

♀ peak calorie consumption: 35~54 yr mean intake: 1,696 kcal mean intake (55~64 yr): 1,485kcal

- Baltimore Longitudinal Study of Aging (BLSA) 1960~1987
 - **\diamond** protein 15% \Rightarrow 16% total energy (stable)
 - fat $42\% \Rightarrow 34\%$ total energy (\Downarrow)
 - carbohydrate $39\% \Rightarrow 44\%$ total energy (\uparrow)

http://betterkidcare.psu.edu/ang elunits/onehour/eating/ChildFo odPyramidSm.gif

fat (25~34 yr) 37.3% \Rightarrow 35.0% (55~64 yr) (\Downarrow) CHO (25~34 yr) 47.7% \Rightarrow 50.3% (55~64 yr) (\Uparrow)

♀ protein (25~34 yr) 16.1% ⇒ 15.3% (55~64 yr) (stable)
fat (25~34 yr) 34.0% ⇒ 29.2% (55~64 yr) (↓)
CHO (25~34 yr) 49.8% ⇒ 55.5% (55~64 yr) (↑)

Patterns of Food Intake

- • Imilk (important for Ca, protein, vitamin A, D, and B₂)
- 60~70 yr young seniors: consume more high fiber food and more fresh vegetables
- 75~85 yr older seniors: consume more high fat food
- vegetarians: higher intakes of vitamin A, Ca, Mg, P, carbohydrate (vs non-vegetarians)
 lower intakes of fat and vitamin B₁₂

滷味看性格

嘉南藥理科技大學食品科學系 05/08/08

- 從你最愛吃的滷味種類中,挑出前五名
- 第一喜歡的,就是最近的十年,然後以此類推
- 滷蛋:穩中求勝型、穩紮穩打型
- 軟米血:享受生活型、個性不耐單調、不安於室
- 甜不辣:保守安逸型
- 豆干:量力而為型、典型內勤
- 海带:忠誠負責型、個性循規蹈矩、有上司緣、成就非凡

http://popblog.tvbs.com.tw/blog/yummytv bs/file_db/20070713192502.JPG

Summary

- Nutrient Metabolism
- Nutrient Requirements
- Food Selection Patterns