
3 DIFFERENTIATION

Copyright © Cengage Learning. All rights reserved.



3.33.3 The Chain Rule

Copyright © Cengage Learning. All rights reserved.



3

Deriving Composite Functions

Consider the function

To compute h′(x), we can first expand h(x)

and then derive the resulting polynomial 

But how should we derive a function like H(x)?

 22( ) 1h x x x   22( ) 1h x x x  

    22 2 2

4 3 2

( ) 1 1 1

2 3 2 1

h x x x x x x x

x x x x

       

    

    22 2 2

4 3 2

( ) 1 1 1

2 3 2 1

h x x x x x x x

x x x x

       

    

3 2( ) 4 6 6 2h x x x x    3 2( ) 4 6 6 2h x x x x    

 1002( ) 1H x x x   1002( ) 1H x x x  
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Deriving Composite Functions

Note that                                 is a composite function:

H(x) is composed of two simpler functions 

So that 

We can use this to find the derivative of H(x).

 1002( ) 1H x x x   1002( ) 1H x x x  

2 100( ) 1 ( )f x x x g x x     and           2 100( ) 1 ( )f x x x g x x     and           

     100100 2( ) ( ) ( ) 1H x g f x f x x x         100100 2( ) ( ) ( ) 1H x g f x f x x x    



5

Deriving Composite Functions

To find the derivative of the composite function H(x):
We let   u = f(x) = x2 + x + 1 and   y = g(u) = u100.

Then we find the derivatives of each of these functions

The ratios of these derivatives suggest that

Substituting x2 + x + 1 for u we get

99( ) 2 1 0n 1 0a d ( )                  du dyf x x g u u
dx du

 99100 2 1dy dy du u x
dx du dx

   

   992( ) 100 1 2 1dyH x x x x
dx

     
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Rule 7: The Chain Rule

If h(x) = g[f(x)], then

Equivalently, if we write y = h(x) = g(u), 
where u = f(x), then

dy dy du
dx du dx

 
dy dy du
dx du dx

 

   ( ) ( ) ( ) ( )dh x g f x g f x f x
dx

      ( ) ( ) ( ) ( )dh x g f x g f x f x
dx

   
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The Chain Rule for Power Functions

Many composite functions have the special form
h(x) = g[f(x)]

where g is defined by the rule 
g(x) = xn (n, a real number) 

so that
h(x) = [f(x)]n

In other words, the function h is given by the power of a 
function f.
Examples:

 
 

1002 2
33

1( ) 1 ( ) ( ) 2 3
5

h x x x H x G x x
x

     


             
 

1002 2
33

1( ) 1 ( ) ( ) 2 3
5

h x x x H x G x x
x

     

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The General Power Rule

If the function f is differentiable and 
h(x) = [f(x)]n (n, a real number),

then

    1( ) ( ) ( ) ( )n ndh x f x n f x f x
dx

      1( ) ( ) ( ) ( )n ndh x f x n f x f x
dx

  



9

Example 2

Find the derivative of 

Solution:
Rewrite as a power function:

Apply the general power rule:

2( ) 1G x x 

 1/22( ) 1G x x 

   1/22 21( ) 1 1
2

dG x x x
dx


   

   1/221 1 2
2

x x


 

2 1
x

x



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Example 3

Find the derivative of 

Solution:
Apply the product rule and the general power rule:

 52( ) 2 3f x x x 

   5 52 2( ) 2 3 2 3d df x x x x x
dx dx

    

   4 5210 2 3 2 2 3x x x x   

         4 52 5 2 3 2 2 3 2x x x x   

   42 2 3 5 2 3x x x x   

   42 2 3 7 3x x x  
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Example 5

Find the derivative of 

Solution:
Rewrite as a power function:

Apply the general power rule:

 22

1( )
4 7

f x
x




   32( ) 2 4 7 8f x x x


   

  22( ) 4 7f x x


 

 32

16

4 7

x

x
 


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Example 6

Find the derivative of 

Solution:
Apply the general power rule and the quotient rule:

32 1( )
3 2

xf x
x
    

22 1 2 1( ) 3
3 2 3 2

x d xf x
x dx x
             

 

2

2
2 1 6 4 6 33
3 2 3 2

x x x
x x

            

       
 

2

2

3 2 2 2 1 32 13
3 2 3 2

x xx
x x

           

 
 

2

4

3 2 1
3 2

x
x




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Applied Problem 8 – Arteriosclerosis

Arteriosclerosis begins during childhood when plaque
forms in the arterial walls, blocking the flow of blood 
through the arteries and leading to heart attacks, stroke 
and gangrene.
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Suppose the idealized cross section of the aorta is circular 
with radius a cm and by year t the thickness of the plaque
is 

h = g(t) cm
then the area of the opening is given by 

A = (a – h)2 cm2

Further suppose the radius of an individual’s artery is 1 cm
(a = 1) and the thickness of the plaque in year t is given by

h = g(t) = 1 – 0.01(10,000 – t2)1/2 cm

Applied Problem 8 – Arteriosclerosis
cont’d
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Then we can use these functions for h and A
h = g(t) = 1 – 0.01(10,000 – t2)1/2 A = f(h) =  (1 – h)2

to find a function that gives us the rate at which A is 
changing with respect to time by applying the chain rule:

( ) ( )dA dA dh f h g t
dt dh dt

    

  1/2212 (1 )( 1) 0.01 10,000 ( 2 )
2

h t t
           

Applied Problem 8 – Arteriosclerosis
cont’d

 1/22

0.012 (1 )
10,000

th
t


 
   
  

2

0.02 (1 )
10,000

h t
t

 
 


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For example, at age 50 (t = 50),

So that

That is, the area of the arterial opening is decreasing at the 
rate of 0.03 cm2 per year for a typical 50 year old.

0.02 (1 0.134)50 0.03
10,000 2500

dA
dt

 
  



1/2(50) 1 0.01(10,000 2500) 0.134h g    

Applied Problem 8 – Arteriosclerosis
cont’d


