
3 DIFFERENTIATION



3.53.5 Higher Order Derivatives



gher-Order Derivatives

e derivative f ′ of a function f is also a function. As such, 
may also be differentiated.

us, the function f ′ has a derivative f ″ at a point x in the 
main of f if the limit of the quotient

sts as h approaches zero. The function f ″ obtained in 
s manner is called the second derivative of the function f, 
t as the derivative f ′ of f is often called the first derivative
f. 
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xample 1

nd the third derivative of the function f(x) = x2/3 and 
termine its domain.

lution:
e have                       and

the required derivative is

e domain of the third derivative is the set of all real
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xample 2(a)

nd the second derivative of the function f(x) = (2x2 + 3)3/2

lution:
sing the general power rule we get the first derivative:
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xample 2(b)

nd the second derivative of the function f(x) = (2x2 +3)3/2

lution:
sing the product rule we get the second derivative:
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plied Example 4 – Acceleration of a Maglev

e distance s (in feet) covered by a maglev moving along 
traight track t seconds after starting from rest is given by 

e function 
s = 4t2 (0  t  10)

hat is the maglev’s acceleration after 30 seconds?

lution:
e velocity of the maglev t seconds from rest is given by
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pplied Example 4 – Solution

e acceleration of the maglev t seconds from rest is given 
the rate of change of the velocity of t, given by
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cont’d


