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Vertical Asymptotes

The line x = a is a vertical asymptote of the graph 
of a function f if either
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Finding Vertical Asymptotes of Rational Functions

Suppose f is a rational function

where P and Q are polynomial functions.
Then, the line x = a is a vertical asymptote of the 
graph of f if Q(a) = 0 but P(a) ≠ 0.
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Example 1
Find the vertical asymptotes of the graph of the function

Solution:
f is a rational function with P(x) = x2 and Q(x) = 4 – x2.

The zeros of Q are found by solving

giving x = –2 and x = 2.
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Example 1 – Solution 
Examine x = –2:

P(–2) = (–2)2 = 4 ≠ 0, 

so x = –2 is a vertical asymptote.

Examine x = 2:

P(2) = (2)2 = 4 ≠ 0, 

so x = 2 is also a vertical asymptote.

cont’d
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Horizontal Asymptotes

The line y = b is a horizontal asymptote of the 
graph of a function f if either
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Example 2
Find the horizontal asymptotes of the graph of the function

Solution:
We compute

and so y = –1 is a horizontal asymptote.
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Example 2 – Solution
We compute

also yielding y = –1 as a horizontal asymptote.
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Example 2 – Solution
So, the graph of f has two vertical asymptotes x = –2
and x = 2, and one horizontal asymptote y = –1:

x

y

y = –1 

x = –2 x = 2 

f(x) 

cont’d
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Asymptotes and Polynomials
A polynomial function has no vertical asymptotes.

To see this, note that a polynomial function P(x) can be 
written as a rational function with a denominator equal to 1. 

Thus, 

Since the denominator is never zero, P has no vertical 
asymptotes.
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Asymptotes and Polynomials
A polynomial function has no horizontal asymptotes.

If P(x) is a polynomial of degree greater or equal to 1, then

are either infinity or minus infinity; that is, they do not exist.

Therefore, P has no horizontal asymptotes.
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A Guide to Sketching a Curve
1. Determine the domain of f.
2. Find the x- and y-intercepts of f.
3. Determine the behavior of f for large absolute values

of x.
4. Find all horizontal and vertical asymptotes of f.
5. Determine the intervals where f is increasing and 

where f is decreasing.
6. Find the relative extrema of f.
7. Determine the concavity of f.
8. Find the inflection points of f.
9. Plot a few additional points to help further identify 

the shape of the graph of f and sketch the graph.
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Example 3
Sketch the graph of the function

Solution:
1. The domain of f is the interval (–, ).

2. By setting x = 0, we find that the y-intercept is 2. 
(The x-intercept is not readily obtainable)

3. Since 

we see that f decreases without bound as x decreases     
without bound and that f increases without bound when          
x increases without bound.
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Example 3 – Solution
4. Since f is a polynomial function, there are no asymptotes.

5.
Setting f ′(x) = 0 gives x = 1 and x = 3 as critical points.

Testing with different values of x we find that f ′(x) > 0          
when x < 1, f ′(x) < 0 when 1 < x < 3, and f ′(x) > 0 when          
x > 3.

Thus, f is increasing in the intervals (–, 1) and (3, ), and 
f is decreasing in the interval (1, 3). 

cont’d
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Example 3 – Solution
6. f ′ changes from positive to negative as we go across     

x = 1, so a relative maximum of f occurs at 
(1, f(1)) = (1, 6).

f ′ changes from negative to positive as we go across 
x = 3, so a relative minimum of f occurs at (3, f(3)) = (1, 2).

7. which is equal to zero when x = 2.

Testing with different values of x we find that f ″(x) < 0
when x < 2 and f ″(x) > 0 when 2 < x.

Thus, f is concave downward in the interval (–, 2) and
concave upward in the interval (2, ).

( ) 6 12 6( 2)f x x x    ( ) 6 12 6( 2)f x x x    

cont’d
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Example 3 – Solution
8. Since f ″(2) = 0, we have an inflection point at 

(2, f(2)) = (2, 4).

Summarizing, we’ve found the following:
• Domain: (–, ).

• Intercept: (0, 2).

•

• Asymptotes: None.

• f is increasing in the intervals (–, 1) and (3, ), and
f is decreasing in the interval (1, 3).
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cont’d
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Example 3 – Solution
• A relative maximum of f occurs at (1, 6).

• A relative minimum of f occurs at (1, 2).

• f is concave downward in the interval (–, 2) and
f is concave upward in the interval (2, ).

• f has an inflection point at (2, 4).

cont’d
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Example 3 – Solution
Sketch the graph:
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cont’d



20

Example 3 – Solution
Sketch the graph:
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Example 4
Sketch the graph of the function

Solution:
1. f is undefined when x = 1, so the domain of f is the set of     

all real numbers other than x = 1.

2. Setting y = 0, gives an x-intercept of –1. 
Setting x = 0, gives an y-intercept of –1. 
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Example 4 – Solution
3. Since 

we see that f(x) approaches the line y = 1 as |x | becomes
arbitrarily large.
• For x > 1, f(x) > 1, so f approaches the line y = 1 from      

above.
• For x < 1, f(x) < 1, so f approaches the line y = 1 from    

below.

4. From step three we conclude that y = 1 is a horizontal 
asymptote of f.
Also, the straight line x = 1 is a vertical asymptote of f. 

1 1lim 1 lim 1
1 1

and      
x x

x x
x x 

 
 

 
1 1lim 1 lim 1
1 1

and      
x x

x x
x x 

 
 

 

cont’d
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Example 4 – Solution
5.

So, f ′(x) is discontinuous at x = 1 and is never equal to   
zero. Testing we find that f ′(x) < 0 wherever it is defined.

6. From step 5 we see that there are no critical numbers of f,
since f ′(x) is never equal to zero.
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Example 4 – Solution
7.

Testing with different values of x we find that f ″(x) < 0
when x < 1 and f ″(x) > 0 when 1 < x.

Thus, f is concave downward in the interval (–, 1) and        
concave upward in the interval (1, ).

8. From point 7 we see there are no inflection points of f,     
since f ″(x) is never equal to zero.
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Example 4 – Solution
Summarizing, we’ve found the following:
• Domain: (–, 1) U (1, ).
• Intercept: (0, –1); (–1, 0).
•

• Asymptotes: x = 1 is a vertical asymptote.
y = 1 is a horizontal asymptote.

• f is decreasing everywhere in the domain of f.
• Relative extrema: None.
• f is concave downward in the interval (–, 1) and                    
f is concave upward in the interval (1, ).

• f has no inflection points.
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Example 4 – Solution
Sketch the graph:
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