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Relative Extrema of a Function of Two Variables

Let f be a function defined on a region R
containing the point (a, b).

Then, f has a relative maximum at (a, b) 
if f(x, y)  f(a, b) for all points (x, y) that are 
sufficiently close to (a, b). The number f(a, b) is 
called a relative maximum value.

Similarly, f has a relative minimum at (a, b)
if f(x, y)  f(a, b) for all points (x, y) that are 
sufficiently close to (a, b). The number f(a, b) is 
called a relative minimum value.
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(a, b)

There is a relative maximum at (a, b).

Graphic Example
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(c, d)

There is an absolute maximum at (c, d). (It is also a relative 
maximum)

Graphic Example
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(e, f )

There is a relative minimum at (e, f ).

Graphic Example
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(g, h)

There is an absolute minimum at (g, h). (It is also a relative 
minimum)

Graphic Example
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At a minimum point of the graph of a function of two variables, 
such as point (a, b) below, the plane tangent to the graph of 
the function is horizontal (assuming the surface 
of the graph is smooth):

Relative Minima
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Thus, at a minimum point, the graph of the function has a 
slope of zero along a direction parallel to the x-axis:

Relative Minima
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Similarly, at a minimum point, the graph of the function has a 
slope of zero along a direction parallel to the y-axis:

Relative Minima
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At a maximum point of the graph of a function of two variables, 
such as point (a, b) below, the plane tangent to the graph of the 
function is horizontal 
(assuming the surface 
of the graph is smooth):

Relative Maxima
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Relative Maxima
Thus, at a maximum point, the graph of the function has a 
slope of zero along a direction parallel to the x-axis:
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Relative Maxima
Similarly, at a maximum point, the graph of the function has a 
slope of zero along a direction parallel to the y-axis:
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Saddle Point
In the case of a saddle point, both partials are equal to zero, 
but the point is neither a maximum nor a minimum.
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In the case of a saddle point, the function is at a minimum
along one vertical plane.

Saddle Point
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In the case of a saddle point, the function is at a maximum
along the perpendicular vertical plane.
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(a, b, f(a, b))

Extrema When Partial Derivatives are Not Defined

A maximum (or minimum) may also occur when both partial 
derivatives are not defined, such as point (a, b) in the graph 
below:
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Critical Point of a Function

A critical point of f is a point (a, b) in the domain of f such 
that both

or at least one of the partial derivatives does not exist.
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Determining Relative Extrema

1. Find the critical points of f(x, y) by solving the system of  
simultaneous equations

fx = 0 fy = 0

2. The second derivative test: Let

D(x, y) = fxx fyy – f 2xy 

3. Then,
a. D(a, b) > 0 and fxx(a, b) < 0 implies that f(x, y) has a  

relative maximum at the point (a, b).
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Determining Relative Extrema
b. D(a, b) > 0 and fxx(a, b) > 0 implies that f(x, y) has a 

relative minimum at the point (a, b).

c. D(a, b) < 0 implies that f(x, y) has neither a relative 
maximum nor a relative minimum at the point (a, b), 
it has instead a saddle point.

d. D(a, b) = 0 implies that the test is inconclusive, so  
some other technique must be used to solve the 
problem.
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Example 1
Find the relative extrema of the function

Solution:
We have  fx = 2x and fy = 2y.

To find the critical points, we set fx = 0 and fy = 0 and solve
the resulting system of simultaneous equations

2x = 0 and        2y = 0

obtaining x = 0, y = 0, or (0, 0), as the sole critical point.

Next, apply the second derivative test to determine the 
nature of the critical point (0, 0). 

2 2( , )f x y x y 2 2( , )f x y x y 
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Example 1 – Solution
We compute   fxx = 2,  fyy = 2,  and   fxy = 0, 
Thus, D(x, y) = fxx fyy – f 2xy = (2)(2) – (0)2 =  4.

We have D(x, y) = 4, and in particular, D(0, 0) = 4.

Since D(0, 0) > 0 and fxx = 2 > 0, we conclude that f has a 
relative minimum at the point (0, 0).

The relative minimum value, f(0, 0) = 0, also happens to be 
the absolute minimum of f.

cont’d
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Example 1 – Solution
The relative minimum value, f(0, 0) = 0, also happens to be 
the absolute minimum of f:

z

y

x

f(x, y) = x2 + y2

Absolute 
minimum
at (0, 0, 0).

cont’d



24

Example 2
Find the relative extrema of the function

Solution:
We have                               and

To find the critical points, we set fx = 0 and fy = 0 and solve
the resulting system of simultaneous equations

6x – 4y – 4 = 0 and     –4x + 8y + 8 = 0

obtaining x = 0, y = –1, or (0, –1), as the sole critical point.

2 2( , ) 3 4 4 4 8 4f x y x xy y x y     2 2( , ) 3 4 4 4 8 4f x y x xy y x y     

6 4 4  xf x y6 4 4  xf x y 4 8 8    yf x y4 8 8    yf x y
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Example 2 – Solution
Next, apply the second derivative test to determine the 
nature of the critical point (0, –1). 

We compute     fxx = 6, fyy = 8, and fxy = – 4, 
Thus, D(x, y) = fxx · fyy – f 2xy = (6)(8) – (– 4)2 =  32.

We have D(x, y) = 32, and in particular, D(0, –1) = 32.

Since D(0, –1) > 0 and fxx = 6 > 0, we conclude that f has a 
relative minimum at the point (0, –1).

The relative minimum value, f(0, –1) = 0, also happens to be 
the absolute minimum of f.

cont’d
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Example 3
Find the relative extrema of the function

Solution:
We have               and

To find the critical points, we set fx = 0 and fy = 0 and solve
the resulting system of simultaneous equations

and

The first equation implies that x = 0, while the second 
equation implies that  y = –1 or  y = 3.

3 2 2( , ) 4 12 36 2f x y y x y y    3 2 2( , ) 4 12 36 2f x y y x y y    

2xf x2xf x

2 0x2 0x

212 24 36    yf y y212 24 36    yf y y

212 24 36 0  y y212 24 36 0  y y
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Example 3 – Solution
Thus, there are two critical points of f : (0, –1) and (0, 3).

To apply the second derivative test, we calculate
fxx = 2 fyy = 24(y – 1) fxy = 0

D(x, y) = fxx · fyy – f 2xy = (2) · 24(y – 1) – (0)2 = 48(y – 1)

Apply the second derivative test to the critical point (0, –1): 
We have D(x, y) = 48(y – 1).

In particular, D(0, –1) = 48[(–1) – 1] = – 96.

cont’d
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Example 3 – Solution
Since D(0, –1) = – 96 < 0 we conclude that f has a saddle 
point at (0, –1).

The saddle point value is f(0, –1) = 22, so there is a saddle 
point at (0, –1, 22).

Apply the second derivative test to the critical point (0, 3): 
We have D(x, y) = 48(y – 1).

In particular, D(0, 3) = 48[(3) – 1] = 96.

cont’d
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Example 3 – Solution
Since D(0, –1) = 96 > 0 and fxx (0, 3) = 2 > 0, we conclude 
that f has a relative minimum at the point (0, 3). 

The relative minimum value, f(0, 3) = –106, so there is a 
relative minimum at (0, 3, –106).

cont’d
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Applied Example 3 – Maximizing Profit

The total weekly revenue that Acrosonic realizes in 
producing and selling its loudspeaker system is given by

where x denotes the number of fully assembled units and y
denotes the number of kits produced and sold each week.
The total weekly cost attributable to the production of these 
loudspeakers is

Determine how many assembled units and how many kits
should be produced per week to maximize profits.

2 21 3 1( , ) 300 240
4 8 4

R x y x y xy x y     2 21 3 1( , ) 300 240
4 8 4

R x y x y xy x y     

( , ) 180 140 5000C x y x y  ( , ) 180 140 5000C x y x y  
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Applied Example 3 – Solution
The contribution to Acrosonic’s weekly profit stemming from 
the production and sale of the bookshelf loudspeaker system
is given by

2 21 3 1 300 240 (180 140 5000)
4 8 4

          
 

x y xy x y x y2 21 3 1 300 240 (180 140 5000)
4 8 4

          
 

x y xy x y x y

( , ) ( , ) ( , ) P x y R x y C x y( , ) ( , ) ( , ) P x y R x y C x y

2 21 3 1 120 100 5000
4 8 4

      x y xy x y2 21 3 1 120 100 5000
4 8 4

      x y xy x y
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Applied Example 3 – Solution
We have

To find the relative maximum of the profit function P, we first 
locate the critical points of P.

Setting Px and Py equal to zero, we obtain

Solving the system of equations we get  x = 208 and  y = 64.

Therefore, P has only one critical point at (208, 64).

2 21 3 1( , ) 120 100 5000
4 8 4

P x y x y xy x y      2 21 3 1( , ) 120 100 5000
4 8 4

P x y x y xy x y      

and1 1 3 1120 0 100 0
2 4 4 4

         x yP x y P y x          and1 1 3 1120 0 100 0
2 4 4 4

         x yP x y P y x          

cont’d
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Applied Example 3 – Solution
To test if the point (208, 64) is a solution to the problem, we 
use the second derivative test.
We compute

So,

In particular, D(208, 64) = 5/16 > 0.

Since D(208, 64) > 0 and Pxx(208, 64) < 0, the point (208, 64)
yields a relative maximum of P.

21 3 1 3 1 5( , )
2 4 4 8 16 16

D x y                
    

21 3 1 3 1 5( , )
2 4 4 8 16 16

D x y                
    

1 3 1
2 4 4

                xx yy xyP P P     
1 3 1
2 4 4

                xx yy xyP P P     

cont’d
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Applied Example 3 – Solution
The relative maximum at (208, 64) is also the absolute 
maximum of P.

We conclude that Acrosonic can maximize its weekly profit 
by manufacturing 208 assembled units and 64 kits.

The maximum weekly profit realizable with this output is

2 21 3 1(208,64) (208) (64) (208)(64)
4 8 4

120(208) 100(64) 5000

   

            

P 2 21 3 1(208,64) (208) (64) (208)(64)
4 8 4

120(208) 100(64) 5000

   

            

P

2 21 3 1( , ) 120 100 5000
4 8 4

P x y x y xy x y      2 21 3 1( , ) 120 100 5000
4 8 4

P x y x y xy x y      

cont’d

$10,680$10,680


