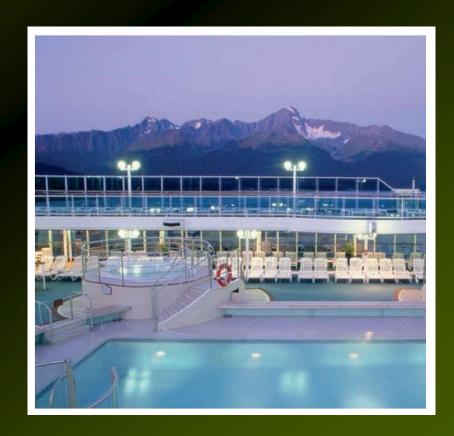
8

CALCULUS OF SEVERAL VARIABLES

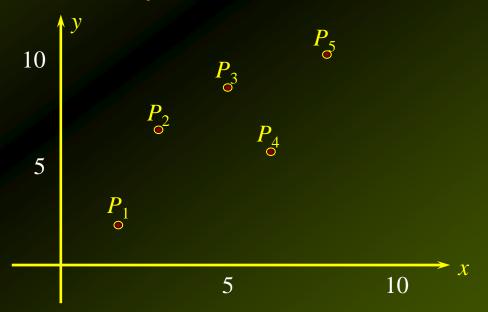


Suppose we are given the data points

$$P_1(x_1, y_1), P_2(x_2, y_2), P_3(x_3, y_3), P_4(x_4, y_4), \text{ and } P_5(x_5, y_5)$$

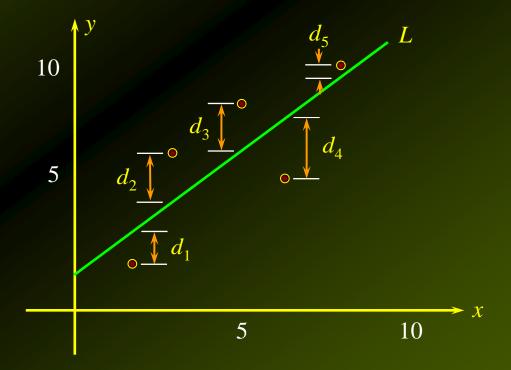
that describe the relationship between two variables *x* and *y*.

By plotting these data points, we obtain a scatter diagram:



Suppose we try to fit a straight line L to the data points P_1 , P_2 , P_3 , P_4 , and P_5 .

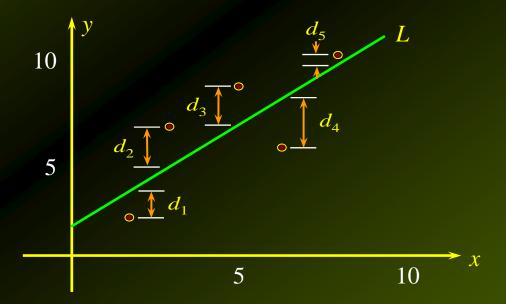
The line will miss these points by the amounts d_1 , d_2 , d_3 , d_4 , and d_5 respectively.



The principle of least squares states that the straight line L that fits the data points best is the one chosen by requiring that the sum of the squares of d_1 , d_2 , d_3 , d_4 , and d_5 , that is

$$d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2$$

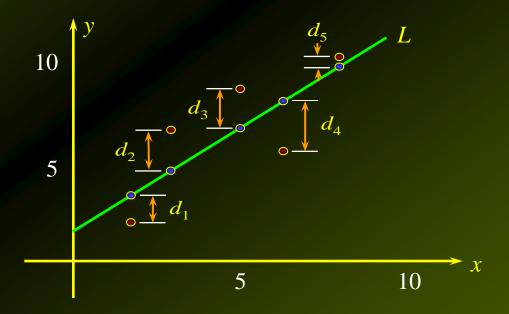
be made as small as possible.



Suppose the regression line L is y = f(x) = mx + b, where m and b are to be determined.

The distances d_1 , d_2 , d_3 , d_4 , and d_5 , represent the errors the line L is making in estimating these points, so that

$$d_1 = f(x_1) - y_1, d_2 = f(x_2) - y_2, d_3 = f(x_3) - y_3,$$
 and so on.



Observe that

$$d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2$$

$$= [f(x_1) - y_1]^2 + [f(x_2) - y_2]^2 + [f(x_3) - y_3]^2$$

$$+ [f(x_4) - y_4]^2 + [f(x_5) - y_5]^2$$

$$= [mx_1 + b - y_1]^2 + [mx_2 + b - y_2]^2 + [mx_3 + b - y_3]^2$$
$$+ [mx_4 + b - y_4]^2 + [mx_5 + b - y_5]^2$$

This may be viewed as a function of two variables *m* and *b*.

Thus, the least-squares criterion is equivalent to minimizing the function

$$f(m,b) = (mx_1 + b - y_1)^2 + (mx_2 + b - y_2)^2 + (mx_3 + b - y_3)^2 + (mx_4 + b - y_4)^2 + (mx_5 + b - y_5)^2$$

We want to minimize

$$f(m,b) = (mx_1 + b - y_1)^2 + (mx_2 + b - y_2)^2 + (mx_3 + b - y_3)^2 + (mx_4 + b - y_4)^2 + (mx_5 + b - y_5)^2$$

We first find the partial derivative with respect to *m*:

$$\frac{\partial f}{\partial m} = 2(mx_1 + b - y_1)x_1 + 2(mx_2 + b - y_2)x_2 + 2(mx_3 + b - y_3)x_3$$
$$+ 2(mx_4 + b - y_4)x_4 + 2(mx_5 + b - y_5)x_5$$

$$= 2[mx_1^2 + bx_1 - y_1x_1 + mx_2^2 + bx_2 - y_2x_2 + mx_3^2 + bx_3 - y_3x_3 + mx_4^2 + bx_4 - y_4x_4 + mx_5^2 + bx_5 - y_5x_5]$$

$$= 2[(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2)m + (x_1 + x_2 + x_3 + x_4 + x_5)b$$

$$-(y_1x_1 + y_2x_2 + y_3x_3 + y_4x_4 + y_5x_5)]$$

We want to minimize

$$f(m,b) = (mx_1 + b - y_1)^2 + (mx_2 + b - y_2)^2 + (mx_3 + b - y_3)^2 + (mx_4 + b - y_4)^2 + (mx_5 + b - y_5)^2$$

We now find the partial derivative with respect to b:

$$\frac{\partial f}{\partial b} = 2(mx_1 + b - y_1) + 2(mx_2 + b - y_2) + 2(mx_3 + b - y_3)$$

$$+ 2(mx_4 + b - y_4) + 2(mx_5 + b - y_5)$$

$$= 2[(x_1 + x_2 + x_3 + x_4 + x_5)m + 5b - (y_1 + y_2 + y_3 + y_4 + y_5)]$$

Setting

$$\frac{\partial f}{\partial m} = 0$$
 and $\frac{\partial f}{\partial b} = 0$

gives

$$(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2)m + (x_1 + x_2 + x_3 + x_4 + x_5)b$$

= $y_1x_1 + y_2x_2 + y_3x_3 + y_4x_4 + y_5x_5$

and

$$(x_1 + x_2 + x_3 + x_4 + x_5)m + 5b = y_1 + y_2 + y_3 + y_4 + y_5$$

Solving the two simultaneous equations for m and b then leads to an equation y = mx + b.

This equation will be the 'best fit' line, or regression line for the given data points.

Suppose we are given *n* data points:

$$P_1(x_1, y_1), P_2(x_2, y_2), P_3(x_3, y_3), \dots, P_n(x_n, y_n)$$

Then, the least-squares (regression) line for the data is given by the linear equation

$$y = f(x) = mx + b$$

where the constants *m* and *b* satisfy the equations

$$(x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2)m + (x_1 + x_2 + x_3 + \dots + x_n)b$$

= $y_1x_1 + y_2x_2 + y_3x_3 + \dots + y_nx_n$

and

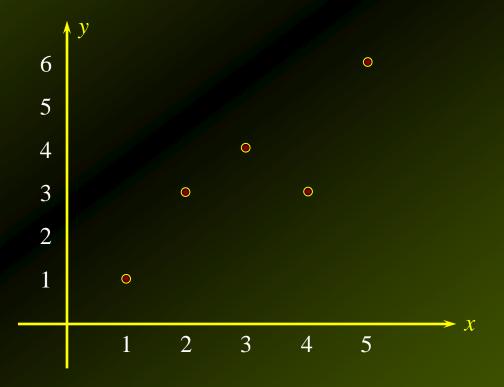
$$(x_1 + x_2 + x_3 + \dots + x_n)m + nb = y_1 + y_2 + y_3 + \dots + y_n$$

simultaneously.

These last two equations are called normal equations.

Example 1

Find the equation of the least-squares line for the data $P_1(1, 1)$, $P_2(2, 3)$, $P_3(3, 4)$, $P_4(4, 3)$, and $P_5(5, 6)$



Example 1 – Solution

Here, we have n = 5 and

$$x_1 = 1$$
 $x_2 = 2$ $x_3 = 3$ $x_4 = 4$ $x_5 = 5$
 $y_1 = 1$ $y_2 = 3$ $y_3 = 4$ $y_4 = 3$ $y_5 = 6$

Substituting in the first equation we get

$$(x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2)m + (x_1 + x_2 + x_3 + \dots + x_n)b$$

$$= y_1x_1 + y_2x_2 + y_3x_3 + \dots + y_nx_n$$

$$(1^2 + 2^2 + 3^2 + 4^2 + 5^2)m + (1 + 2 + 3 + 4 + 5)b$$

$$= (1)(1) + (3)(2) + (4)(3) + (3)(4) + (6)(5)$$

$$55m + 15b = 61$$

Example 1 – Solution

Substituting in the second equation we get

$$(x_1 + x_2 + x_3 + \dots + x_n)m + 5b = y_1 + y_2 + y_3 + \dots + y_n$$
$$(1 + 2 + 3 + 4 + 5)m + 5b = 1 + 3 + 4 + 3 + 6$$
$$15m + 5b = 17$$

Solving the simultaneous equations

$$55m + 15b = 61$$
 $15m + 5b = 17$

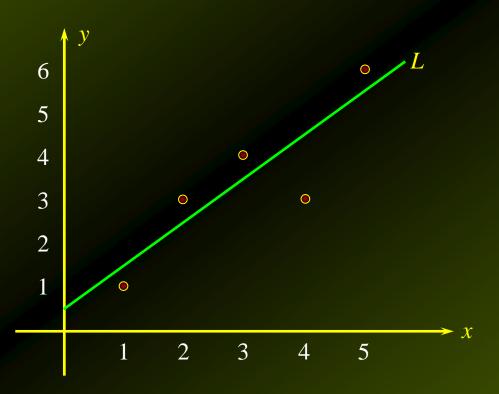
gives m = 1 and b = 0.4.

Therefore, the required least-squares line is

$$y = x + 0.4$$

Example 1 – Solution

Below is the graph of the required least-squares line y = x + 0.4



Applied Example 3 – Maximizing Profit

A market research study provided the following data based on the projected monthly sales *x* (in thousands) of an adventure movie DVD.

p	38	36	34.5	30	28.5
X	2.2	5.4	7.0	11.5	14.6

a. Find the demand equation if the demand curve is the least-squares line for these data.

Applied Example 3 – *Maximizing Profit*

cont'd

b. The total monthly cost function associated with producing and distributing the DVD is given by

$$C(x) = 4x + 25$$

where x denotes the number of discs (in thousands) produced and sold, and C(x) is in thousands of dollars. Determine the unit wholesale price that will maximize monthly profits.

Applied Example 3(a) – Solution

The calculations required for obtaining the normal equations may be summarized as follows:

		0	
X	p	x ²	<u>xp</u>
2.2	38.0	4.84	83.6
5.4	36.0	29.16	194.4
7.0	34.5	49.00	241.5
11.5	30.0	132.25	345.0
14.6	28.5	213.16	416.1
40.7	167.0	428.41	1280.6

Applied Example 3(a) – Solution

cont'd

Thus, the nominal equations are

$$5b + 40.7m = 167$$
 and $40.7b + 428.41m = 1280.6$

Solving the system of linear equations simultaneously, we find that $m \approx -0.81$ and $b \approx 39.99$

Therefore, the required demand equation is given by

$$p = f(x) = -0.81x + 39.99$$
 $(0 \le x \le 49.37)$

Applied Example 3(b) – Solution

cont'd

The total revenue function in this case is given by

$$R(x) = xp = x(-0.81x + 39.99)$$
$$= -0.81x^2 + 39.99x$$

Since the total cost function is

$$C(x) = 4x + 25$$

we see that the profit function is

$$P(x) = R - C$$

$$= -0.81x^{2} + 39.99x - (4x + 25)$$

$$= -0.81x^{2} + 35.99x - 25$$

Applied Example 3(b) – Solution

cont'd

To find the absolute maximum of P(x) over the closed interval [0, 49.37], we compute

$$P'(x) = -1.62x + 35.99$$

Since P(x) = 0, we find that $x \approx 22.22$ as the only critical point of P.

Finally, from the table

X	0	22.22	49.37
P(x)	–25	374.78	- 222.47

we see that the optimal wholesale price is

$$p = -0.81(22.22) + 39.99 = 21.99$$

or \$21.99 per disc.