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You may recall that we can do a Riemann sum to 
approximate the area under the graph of a function of one 
variable by adding the areas of the rectangles that form 
below the graph resulting from small increments of x(x)
within a given interval [a, b]:

A Geometric Interpretation of the Double Integral
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A Geometric Interpretation of the Double Integral

Similarly, it is possible to obtain an approximation of the 
volume of the solid under the graph of a function of two 
variables.
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A Geometric Interpretation of the Double Integral

To find the volume of the solid under the surface, we can 
perform a Riemann sum of the volume Si of parallelepipeds
with base Ri = x  y and height f(xi, yi):
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A Geometric Interpretation of the Double Integral

To find the volume of the solid under the surface, we can 
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A Geometric Interpretation of the Double Integral

To find the volume of the solid under the surface, we can 
perform a Riemann sum of the volume Si of parallelepipeds
with base Ri = x  y and height f(xi, yi):
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A Geometric Interpretation of the Double Integral

The limit of the Riemann sum obtained when the number of 
rectangles m along the x-axis, and the number of 
subdivisions n along the y-axis tends to infinity is the value of 
the double integral of f(x, y) over the region R and is denoted
by ( , )

R
f x y dA  ( , )
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Theorem 1: Evaluating a Double Integral Over a Plane Region

a. Suppose g1(x) and g2(x) are continuous functions on               
[a, b] and the region R is defined by
R = {(x, y)| g1(x)  y  g2(x); a  x  b}.

Then,
2
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Theorem 1: Evaluating a Double Integral Over a Plane Region

b. Suppose h1(y) and h2(y) are continuous functions on         
[c, d] and the region R is defined by 
R = {(x, y)| h1(y)  x  h2(y); c  y  d}.

Then,
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f x y dA f x y dx dy       
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Example 2
Evaluate ∫R∫f(x, y)dA given that f(x, y) = x2 + y2 and R is the 
region bounded by the graphs of g1(x) = x and g2(x) = 2x
for 0  x  2.

Solution:
The region under consideration is:
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Example 2 – Solution
Using Theorem 1, we find:
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Example 3
Evaluate ∫R∫f(x, y) dA, where f(x, y) = xey and R is the plane
region bounded by the graphs of y = x2 and y = x.

Solution:
The region under consideration is:

The points of intersection of the 
two curves are found by solving
the equation x2 = x, giving x = 0
and x = 1.
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Example 3 – Solution
Using Theorem 1, we find:
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cont’d
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The Volume of a Solid Under a Surface

Let R be a region in the xy-plane and let f be 
continuous and nonnegative on R.

Then, the volume of the solid under a surface
bounded above by z = f(x, y) and below by R is 
given by
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Example 4
Find the volume of the solid bounded above by the plane        
z = f(x, y) = y and below by the plane region R defined by 

Solution:
The graph of the region R is:

Observe that  f(x, y) = y > 0
for (x, y) in R.
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Therefore, the required volume is given by
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Example 4 – Solution cont’d
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The graph of the solid in question is:

Example 4 – Solution
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