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Sine and Cosine: A Review

In applied mathematics, angles are measured in radians, defined as the
distance along the perimeter of the circle of radius 1.
The basic identity between radians and degrees is given by 21 rad = 360

Describing Oscillations with the Cosine

Oscillations that are shaped like the graph of the sine or cosine function are
called sinusoidal. There are four numbers needed to describe an oscillation
with the cosine function: the average, the amplitude, the period, and the

phase.
Value
s period T B The amplitude is the difference between the
/\ 51 /:\ 71\ maximum A + B maximum and the average.
| \ o '*.,ﬂmp;tudef \H m The period is the time between successive
/- 1 :_T/ [\ peaks.
/ \ f / 'H /N W m The phase is the time of the first peak.
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y Building an Oscillation by Shifting

i}‘ h i'-

and Scaling the Cosine Function

f () = 2.0 cos(t). f(t)=3.0+ 2.0 cos(t) adding 3.0
A0+ 20 cosif 3.0 + cos(f moves graph
up by 3.0

ir -
4l - \
multiplying cosf) 4+ \ \
3 | by 2.0 doubles / ! 3 /
- ) B -
the amplitude : \/,.' a \/l.- ' average = 3.0
_ - N L.
i Y ?’

;ﬂ z__j\\ _ amplitude P \ Al 1
N

- 1

/
~ 2T\ =20 ! \
} 4 y I‘L-k‘ . F ! \ L,
2= '\.H."-":" _D_ ""..._,--"'l':?r 2a L. I'-1'. j.‘r_lil "-||I ,|'I T
'.‘. i i "'. .lr
2| wd 3t b
f (t) = 3.0 + 2.0 cos(2m*t/4) f(t) = 3.0 + 2.0 cos(2T*(t-1)/4)
3.0 + 2.0 cos(2 w40 3.0 + 2.0cos (2t — 1.0)4.0)

| phase = 1.0

~ f s£A ,x s
X ﬂ 7 ?‘H / ﬂ}{;f ;ff \ /(\ 'x If f;/x\' ﬂ /
\kj \/ III\':-}I{ 4 ; IIIIII\./"!I A -'}{\/' X\j \/IIII Il7"- IIJ:{/

.r.'?J'

—E-rr multiplying ¢ by 24, D —E-rr subtracting 1.0 fl'l:ll'l'l i
‘] " changes pericd to 4.0 d changes phase to 1.0
C
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Cycles

Women have two cycles affecting body temperature: a daily and a monthly rhythm.
The key facts about these two cycles are given in the following table:

Minimum Maximum Awverage

Time of Maximum  Period
Draily cyele 365 7.1 6.8

2:00 pom. 24 hours
Monthly cycle 36.6 37.0 6.8 Day 16 28 days
Draily temperature cycle Monthly temperature cycle
7.2
L 370 /\ /\ s
B oaesl—f——A L A _ &
E- 36.6 \/ %
& 6.4 =

L2 36.2
o6 1218 0 & 12 18 O o7 K210 7 14210

Time (hours) Time (days)

The amplitude of a cycle is : amplitude = maximum — average.
For the daily cycle, the amplitude is

daily cycle amplitude = 37.1 - 36.8 = 0.3.
For the monthly cycle, the amplitude is

monthly cycle amplitude = 37.0 - 36.8 = 0.2.

2 2w
Pty =368+ 0.3cos (ﬂ—ju — 14‘1)_ Fr(f) =368 4+ 0.2 cos (ﬁ“ — 16‘1) ;
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We now derive a model of two competing bacterial populations that leads naturally to a
discrete-time dynamical system that is not linear. Nonlinear dynamical systems may have

more than one equilibrium. By comparing the two equilibria, we will catch a glimpse of an
important theme, the stability of equilibria.

Model of Selection: An invasion by mutant bacteria

If the original (or wild) type has a per capita reproduction of 1.5 and the mutant type has a per
capita reproduction of 2.0, the two populations will follow the discrete-time dynamical systems
b..; = 1.5b, discrete-time dynamical system for wild type
m.,; = 2.0m, discrete-time dynamical system for mutants.
Selection occurs when the frequency of a gene (the mutation) changes over time.

multiply multiply multiply multiply

[-.j-_|_:7. |‘l_‘.' 1.5 I.‘l_‘.' 2.0 h:,', 210 .FH;_|_1 — S}Hr

choICIoTam
original (or wild) type

mutant type
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A new variable called pt was defined to be the fraction of mutants at time t. Then

number of mutants

pr= total number

number of mutants

number of mutants + number of wild type
my

my+ b,

Fraction of My Mgy

mutants  2f m, + b, Pr+1 = M1 + by
S,
"~ smy + rby
. | g
wild type Fraction of _ _p - by _ M +b,
b, wild type “ me+ by St T
Pt

spe+r(l — py)
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Example Finding the Updated Fraction

If my = 2.0 x 10° and by = 3.0 x 10° (Example 1.10.1), the updated populations are

My =2.0m =4.0x 10°
b{+l = 1.5{?{ = ‘1‘.5 X ]Dﬁ.

The updated fraction of the mutant type, pi41. is

4.0 x 10° 00816
P = 0100 445 100 o

We can follow these same steps to find the discrete-time dynamical system for p;,.
By definition

Prar = Mgy
| =
. M1+ by
Using the discrete-time dynamical systems for the two types (Equation 1.10.1), we find
_ 2.0m;
P = S Oom, 1 1.5b,
~ m
D = 20255 ! 2.0p,
+1= I b (41 = :
20575 + 1515 2.0p: + 1.5(1— pr)

e ARG



If p, = 0.0625, the discrete-time dynamical system tells us that

0.8

2.0.0.0625

— — GDSIE' :202
P = S - 0.0625 + 1.5(1 — 0.0625) |

0

The discrete-time dynamical system for the fraction is not linear becau

Y] 02 04 06 08 1

se it involves

division. The graph of the function is curved. We plotted it by substituting in

representative values for a fraction, which must lie between 0 and 1.

The equilibria of this discrete-time,dynamical system are found by solving

. 2.0p* _
pr= - - the equation for the
2.0p* 4+ L.5(1 = p*)  equilibrium
pr(2.0p* 4+ 1.5(1 — p*))=2.0p* multiply through by
denominator
p*(2.0p* + 1.5(1 — p*)) — 2.0p* =0 move everything to one
side
pr2.op*+15(1—-p*)—2.00=0 factor out p*
p*2.0p*+15-15p*=-2.0)=0 multiply out terms in
parentheses
p*(0.5p*—-05)=0 simplify

Extinction of the mutant (at px =0), extinction of the wild type (at p* =1)
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Stable and Unstable Equilibria

If we started exactly at p, = 0, the solution would remain at pt = O for all times t. Similarly, if we started
exactly at p, = 1, the solution would remain at pt = 1 for all times

t. The two equilibria behave quite differently, however, if our starting point is nearby. A
solution starting near p, = 0 moves steadily away from the equilibrium.
A solution starting near p, =1 moves toward the equilibrium.

10 [ Lo r

08 + 0.8

0.6 0.6 F
E *
= pat = 04t

02 0z b

:J I I 1 I 1 o | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Pr P

Stable and unstable resting points for a ball

b} A ball resting on a small hill is
unstable to small changes in position

M

a) A ball resting in a small depression
is stable to small changes in position
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An Excitable Systems: The Heart

The sinoatrial node (SA node) is the pacemaker, sending regular signals to the

atrioventrical node (AV node). The AV node then tells the heart to beat if conditions
are suitable.

Our goal is to understand how simple changes in the parameters of a heart can
produce heartbeat patterns called second-degree block. With these syndromes,

people’s hearts either beat half as often as they should or beat normally for a while,
skip a beat, and return to beating.

Electrical System of the Heart

QRS complex
SA node®:
o T-wave

S& node fines Veantimcles
S4gEls
Abrium
BOaalal

AN nisde Wantighes
PAUTAE ralax

His-Purkinje sz.rsteﬁi
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Membrane Potential

Membrane potentials in cells are determined primarily by three factors:

1) the concentration of ions on the inside and outside of the cell;

2) the permeability of the cell membrane to those ions through specific ion

channels;

3) by the activity of electrogenic pumps (e.g. Na* /K* —ATPase and Ca**

transport pumps) that maintain the ion concentrations across the
membrane.

Equilibrium potential for K* (Ey; Nernst potential)

—61_ [K*];

Ex = logga.

(where [K*], = 150 mM and [K*], = 4 mM; and z=1 because K* is monovalent)

= —96 mV

Equilibrium potential for Na*(Ey,)

—61  [Na‘l]

En. = — 1 ~ = +52mV
Na =T 08 Nat], -

(where [Na*];= 20 mM and [Na*], = 145 mM; and z=1 because Na* is monvalent)

Equilibrium potential for Ca** (E.,)

—61 1 [Ca*™];
z Gg[CaH]n

Ec, = = +134mV

Myocyte

/ K;\L\‘
f (150 mM) K*

| @mm)

|I |
| |
| Ca++
| Catt (2.5 mM)
| (0.0001 m) I
I". “r‘_,-- N’]
"-.‘ Ma®t ; 145 mbd)

\(20 mM),/

L :

‘-\.\__,-Jf
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Membrane Potential

To maintain the concentration gradients for Na* and K*, it is necessary to transport Na*
out of the cell and K* back into the cell. There is located on the sarcolemma an energy
dependent (ATP-dependent) pump system Na*/K*-ATPase) that that performs this
function.

Pump is electrogenic in nature because it extrudes 3 Na* for every 2 K* entering the
cell.

Inhibition of this pump, therefore, causes depolarization resulting not only from
changes in Na* and K* concentration gradients, but also from the loss of an
electrogenic component of the membrane potential.

By pumping more positive changes out of the cell than into the cell, the pump activity
creates a negative potential within the cell.

Small increases in external K* can stimulate B \4 + N\ .
the pump activity and thereby cause [ e /'*' e\ bk
hyperpolarization. \ \oTFe=9
\ *-* 2K*
K* 9 « e

e ARG



$E§+ﬂ5ﬁ, Euur_r_ﬁﬁ F"E%)

Action Potentials

Many cells in the body have the ability to undergo a transient repolarization and
depolarization that is either triggered by external mechanisms.

Resting membrane potential (phase 4, about -90 mV)
Ventricular Myocyte

Positive potassium ions are leaving the cell and ‘Action Potential
making the membrane potential more negative +50 1
inside. At the same time, fast sodium channel 'Kio—
and slow calcium channels are closed. 0
P E
L < Resingisomy ) threshold voltage -70 ==| ,
-100- .

When depolarized to a threshold voltage (phase 0,+10mV)

Caused by a transient increase in fast Na* currents (Iy.,),
due to the opening of sodium channels, and
concomitant outward directed K* currents as the
potassium channel closed.

http://www.cvphysiology.com/Arrhythmias/A010.htm
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Action Potentials

Repolarization (phase 1)

represents an initial repolarization that is caused by

the opening of a special type of transient outward

K* channel (K,), which causes a short-lived,

hyperpolarizing outward K* current (l,.)-
Repolarization (phase 2)

Large increase in slow inward gCa** occurring at
the same time and the transient nature of I,
the repolarization is delayed and there is a
plateau phase in the action potential.

Repolarization (phase 3)

Occurs when gK* (and therefore I) increases,
along with the inactivation of Ca** channels
(decreased gCat**).

Ventricular Myocyte
Action Potential

+50 1
IKt-:u—
0 —
=
= .
0
-50
100
Ina — .
i I
E - B MNerve Cell
© Cardiac Myocyte
c 0
@
©
o
Q -
=
o
= pp—— ]
€ 100 v .
= o 500
Time (ms)

e ARG



Effective Refractory Period Ventricular Myocyte

Action Potential
+50 —

* Once an action potential is initiated, there is a i
period of time comprising phases 0, 1, 2, and 0-
part of phase 3 that a new action potential T |
cannot be initiated. This is termed the effective P
refractory period (ERP) or the absolute )
refractory period (ARP) of the cell. 00

» During the ERP, stimulation of the cell by an
adjacent cell undergoing depolarization does not
produce new, propagated action potentials. The
ERP acts as a protective mechanism in the
heart by preventing multiple, compounded action ERP
potentials from occurring (i.e., it limits the
frequency of depolarization and therefore heart —
rate).
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A Model of Gas Exchange in the Lung

* An adult male lung has a volume of about 6.0 L when full. With each
breath, 0.6 L of the air in the lungs are exhaled, and replaced by 0.6 L

of outside (or ambient) air. exhale 0.6 liter inhale 0.6 liter
. 2.0 millimoles/per liter 5.0 millimoles/per liter

. Sup_pose further that f[he lung contams a 1 2 millimoles 3.0 millimoles

particular chemical with a concentrationof 2.0

mmol/L before exhaling that the lungs - [ iohale

contain. | 0.6 liter | 0.6 liter

. . . . " I PO I

« The ambient air has a chemical concentration 1 / “"tm'

of 5.0 mmol/L. What is the chemical AN k/ 6.0 liters
i f |
concentration after one breath? |

—

2.0 mmol/L
\ 10,8 mimol \
; total amount 2.0 mmol/L 10.8 mmol + 3.0 mmol

volume

. ( A millimole is 6.02x 102° molecules)
total amount = concentration X volume.

Assumption: Neither air nor chemical is produced or used while breathing.

B TR



Breathing creates a discrete-time dynamical system. The original concentration
of 2.0 mmol/L is updated to 2.3 mmol/L after a breath.

olime Che e neantration Discrete-time dynamical system

Step L} immeoll] [(mmol/L} What We Did
Air in lungs 6.0 6.0 - Multiplied volume of lungs (6.0} Ct+l - 0'5 + 0'9Ct '
before breath ) - ! by concentration (o) to get 6.0cs.
Alr Multiplied volume exhaled (0.6)
exhaled L5 L o by concentration (¢, to get 0.6c,.
Air in lungs 5.4 540 - Multiplied volume remaining (5.4)
after exhalation ) - ! by concentration (o) to get 5.4cs.
AT 06 3.0 5.0 Multplied volume inhaled (0.6) by
inhaled ’ o ’ ambient concentration (5.0} to get 7.5.
Added inhaled chemical (3.0) to
Air in lungs . remaining chemical {+3.4¢ ) and
s bt 00 30F34a 054006 g by vohume (6.0 10 ot
0.54 0.9¢,.
The solutions of the updating equation are equilibria. 10 - diagonal
c* =0.5+0.9¢" the onginal equation 81 _
*—0.9¢* =0.5 btract 0.0c* k ide 6 updating
— —_— I3 ne o r S ] A ,
[ - B T subdtract UL to gel unknowns on one si n t‘,(lLI]llbI‘lLIm function
O.1c*=0.5 do the subtraction S 4k
0.5 g
C* = = =5.0. divide by 0.1 2 F
0.1
. 0 L 1 ! 1 |
The equilibrium value is 5.0 mmol/L. 0 > 4 6 8 10
Cy

Cisy = 0.5+0.9x5.0=5.0=c¢
B LR



A “General” Model of Gas Exchange in the Lung

An adult male lung has a volume of about V liter when full. With each
breath, W liter of the air in the lungs are exhaled, and replaced by , W

liter of outside (or ambient) air. exale W liters inhiate W liters
] o mmoliL  mmolL
Suppose further that the lung contains a F-trmmc-l ¥ W mmol
particular chemical with a concentration of _c, /
mmol/L before exhaling that the lungs ¥
contain. —a [v% : e ;
The ambient concentration of chemical is V liters 'ﬂm W liters |
y mmol/L (*gamma”). | kaffj '
Discrete-time dynamical system '\\ / o W k /
e(V-—W)+»W crmamolL (¥ = Wic; + yW mmol
f"l.l.l — 1.! - Ii'l.r
Ve WAy W General lung discrete-time dynamical system
v Cip1 = (1 —gle; +qy.
W W
=l — e =+ J — : .
V V The term c,,, is a weighted average of the old

concentration ¢, and the ambient concentration y .

B T2



Definition A weighted average of two values x and y is a sum of the form
gx + (1 - q) y for some value of g between 0 and 1.

+

mix ‘ ‘

Suppose 1.0 L of liquid with a concentration of 10.0 mmol/L of salt are mixed with

3.0 L of liquid with a concentration of 5.0 mmol/L of salt. What is the concentration of the
resulting mixture?

-

0.25x10.0 mmol/L + 0.75x5.0 mmol/L = 6.25 mmol/L.

Suppose 1.0 L of liquid with a concentration of 10.0 mmol/L of salt are mixed with 3.0 L of
liquid with a concentration of 5.0 mmol/L of salt and 1.0 L of liquid with a concentration of
2.0 mmol/L of salt. What is the concentration of the resulting mixture?

0.20 x 10.0 mmol/L + 0.60 x 5.0 mmol/L + 0.20 x 2.0 mmol/L = 5.4 mmol/L.

1) 1) 1)

(1L/5L) (3L/5L) (1L/5L)

e ARG
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A “Absorption” Model of Gas Exchange in the Lung

« An adult male lung has a volume of about V liter when full. With each
breath, W liter of the air in the lungs are exhaled, and replaced by , W
liter of outside (or ambient) air.

o Suppose further that the lung contains a e Suppose that a fraction g of air is exchanged
particular chemical with a concentration of ¢,  each breath, and that a fraction a of chemical
mmol/L before exhaling that the lungs Is absorbed
contain. : : .

: : U Lung discrete-time dynamical system
» The ambient concentration of chemical is J y y
y mmol/L (“gamma”). Cer =(1 — a)(1 - a)c; + qv.
absorb a inhale W L
ffﬂCthll a exhale W liters Y mmol/L
Y 2 i\ Kl
VL
W . .
(1 - a) g == fraction of air exchanged
(1-a), (1=g)1 - a),+q7

B TR
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Example: Absorption of Oxygen by the Lung

Consider again a lungs that has a volume of 6.0 L(V) and that replaces 0.6 L(W) each
breath with ambient air (g = 0.6/6 ). Suppose that we are tracking oxygen, with an
ambient concentration of 21% (y), and assume that 30% (a) of the oxygen in the lungs is
absorbed each breath.

The discrete-time dynamical system is then
Cnqp = 0.9x0.7¢,+ 0.1 x0.21 = 0.63c, + 0.021,
The equilibrium concentration in the lungs then becomes
c* =0.63c" +0.021
0.37¢* =0.021

c* =0.057.
The equilibrium concentration of oxygen in the lungs, which is equal to the
concentration of oxygen in the air breathed out, would be about 5.7%, or roughly one
fourth of the ambient concentration.

et =1 =gl —a)c* +gq¥
c*= (1 —g¥{l —e)c* =gy

=1 —g)(l —a))=
' DU —an=qy o Total absorbed per breath = acxV

T l=(l—g)(l —a) ERES T FR2HEm
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